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We describe the Carr–Geman–Madan–Yor (CGMY) and Meixner processes
as time changed Brownian motions. The CGMY uses a time change that is
absolutely continuous with respect to the one-sided stable (Y/2) subordi-
nator while the Meixner time change is absolutely continuous with respect
to the one-sided stable (1/2) subordinator. The required time changes may
be generated by simulating the requisite one-sided stable subordinator and
throwing away some of the jumps as described by Asmussen and Rosinski
(2001).

1 INTRODUCTION

Lévy processes are increasingly being used to model the local motion of asset
returns, permitting the use of distributions that are both skewed and capable of
matching the high levels of kurtosis observed in factors driving equity returns. By
way of examples we cite the normal inverse Gaussian process (Barndorff-Nielsen
(1998)), the hyperbolic process (Eberlein et al (1998)), and the variance gamma
process (Madan et al (1998)). For the valuation of structured equity products the
importance of skewness is well recognized and has led to the development of local
Lévy processes (see Carr et al (2004)) that preserve skews in forward implied
volatility curves. It is also understood from the steepness of implied volatility
curves that tail events have significantly higher prices than those implied by a
Gaussian distribution with the consequence that pricing distributions display high
levels of excess kurtosis.

On a single asset one may simulate the Lévy process calibrated to the prices
of vanilla options to value equity structured products written on a single underlier.
Such a simulation (see Asmussen and Rosinski (2001)) may approximate the small
jumps using a diffusion process, with the large jumps simulated as a compound
Poisson process where one uses the normalized large jump Lévy measure as the
density of jump magnitudes with the integral of the Lévy measure over the large
jumps serving as the jump arrival rate. However, increasingly one sees multiasset
structures being traded and this requires asset correlations to be modeled.
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28 D. B. Madan and M. Yor

Given marginal Lévy processes one can accommodate correlations if one can
represent the Lévy process as a time changed Brownian motion. In this case
we correlate the simulated processes by correlating the Brownian motions while
preserving the independent time changes for each of the marginal underliers. For
alternative approaches to introducing dependence in a multiasset Lévy context we
refer the reader to Luciano and Schoutens (2006) and Joshi and Stacey (2005). For
yet another approach to modeling dependence via correlating Brownian motions
subjected to a common time change we refer the reader to the thesis of Chen (2008).
An extensive study of the various ways to use these procedures in dependence
studies is beyond the scope of this paper and is left to future research.

It is therefore useful to have representations of Lévy processes as time changed
Brownian motions. For some Lévy processes, such as the variance gamma process
or the normal inverse Gaussian process, these are known by construction of the
Lévy process as a time changed Brownian motion. For other Lévy processes, such
as the Carr–Geman–Madan–Yor (CGMY) process (Carr et al (2002); see also
Koponen (1995); Boyarchenko and Levendorskii (1999, 2000)) or the Meixner
process (Schoutens and Teugels (1998); see also Grigelionis (1999); Schoutens
(2000) and Pitman and Yor (2003)), the process is defined directly by its Lévy
measure and it is not clear a priori whether the processes can be represented as time
changed Brownian motions. With a view to enhancing the applicability of these
processes, particularly with respect to multiasset structured products, we develop
the representations of these processes as time changed Brownian motions.

An additional advantage of the new representations is that of reducing processes
of infinite variation, for example Y > 1 in CGMY, that are relatively harder
to simulate (as explained by Asmussen and Rosinski (2001)) to time changed
Brownian motion where the time change is a finite variation subordinator. The
subordinator is then easier to simulate and the Brownian motion is also easily
simulated.

Section 2 presents, for completeness, some preliminary results on Lévy pro-
cesses that we employ in the subsequent development. In Section 3 we develop the
CGMY process as a time changed Brownian motion with drift, where the law of the
time change is absolutely continuous over finite time intervals with respect to that
of the one-sided stable Y/2 subordinator. The representation of CGMY as a time
changed Brownian motion is described in Section 3. Section 4 presents the simula-
tion details for CGMY as a time changed Brownian motion. Section 5 develops the
time change for the Meixner process as absolutely continuous with respect to the
one-sided stable 1/2 subordinator. Simulation strategies for the Meixner process
based on these representations are described in Section 6. Section 7 reports on the
simulation results using prices of options computed by simulation and compared
with those obtained by Fourier inversion. Section 8 provides conclusions.

2 PRELIMINARY RESULTS ON LÉVY PROCESSES

We present two results from the theory of Lévy processes that we make critical
use of in our subsequent development. The first result relates the Lévy measure of
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a process obtained on subordinating a Brownian motion to the Lévy measure of
the subordinator. The second result presents the detailed relationship between the
standard presentation of the characteristic function of a two-sided jump and one-
sided jump as a stable Lévy process and its Lévy measure. These are presented in
the following two short sections.

2.1 Lévy measure of a subordinated Brownian motion

Suppose that the Lévy process X(t) is obtained by subordinating Brownian motion
with drift (ie, the process θu + W(u), for (W(u), u ≥ 0) a Brownian motion)
by an independent subordinator Y (t) with Lévy measure ν(dy). Then applying
Theorem 30.1 of Sato (1999) (see also Huff (1969); Bertoin ((1999, p. 71); (1996,
p. 162)) we get that the Lévy measure of the process X(t) is given by µ(dx) where:

µ(dx) = dx

∫ ∞

0
ν(dy)

1√
2πy

e−(x−θy)2/2y (1)

2.2 Stable processes

The Stable Lévy process S(σ, α, β) = (X(t), t ≥ 0) with parameters (σ, α, β) (for
details see DuMouchel (1973); DuMouchel (1975); Bertoin (1996); Samorodnitsky
and Taqqu (1994); Nolan (2001) and Ito (2004)) has a characteristic function in
standard form:

E[eiuX(t)] = exp(−t�(u))

where the characteristic exponent �(u) is given by:

�(u) = σα|u|α
(

1 − iβ sign(u) tan

(
πα

2

))
, α �= 1

= σ |u|
(

1 + iβ sign(u)
2

π
log(|u|)

)
, α = 1 (2)

The parameters satisfy the restrictions σ > 0, 0 < α ≤ 2 and −1 ≤ β ≤ 1. The one-
sided jump stable processes result when β = 1 and there are only positive jumps or
β = −1, in which case there are only negative jumps.

The Lévy density of the stable process is of the form:

k(x) = cp

x1+α
1x>0 + cn

|x|1+α
1x<0 (3)

and we have that:

β = cp − cn

cp + cn

(4)

It remains to express σ in terms of the parameters of the Lévy measure. In the
one-sided case with only positive jumps we have:

σ =
[
cp�(α/2)�(1 − α/2)

2�(1 + α)

]1/α

(5)
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and more generally for the two-sided jump case we have:

σ =
[
cp + cn

2

�(α/2)�(1 − α/2)

�(1 + α)

]1/α

(6)

Conversely, cp and cn may be computed in terms of β and σ .

3 CGMY AS TIME CHANGED BROWNIAN MOTION

We wish to write the CGMY process in the form:

XCGMY(t) = θY (t) + W(Y(t))

for an increasing time change process given by a subordinator (Y (t), t ≥ 0)

independent of the Brownian motion (W(s), s ≥ 0).
The characteristic function of the CGMY process is:

E[exp(iuXCGMY(t))] = (φCGMY(u))t = exp

(
tC�(−Y )

[
(M − iu)Y − MY +
(G + iu)Y − GY

])
The complex exponentiation is defined via the complex logarithm with a branch cut
on the negative real axis with polar coordinate arguments for the complex logarithm
restricted to the interval ]−π, +π]. The CGMY process is defined as a pure jump
Lévy process by its Lévy measure:

kCGMY(x) = C

[
exp(−G|x|)

|x|1+Y
1x<0 + exp(−Mx)

x1+Y
1x>0

]
On the other hand we have, in all generality, by conditioning on the time change

that:

E[eiu(θY (t)+W(Y(t))] = E

[
exp

(
iuθY (t) − Y (t)

2
u2

)]
= E

[
exp

(
−

(
u2

2
− iuθ

)
Y (t)

)]
Take u(λ) to be any solution of:

λ =
(

u2

2
− iuθ

)
Then we have the Laplace transform of the time change subordinator as:

E[e−λY(t)] = exp(tC�(−Y )[(M − iu(λ))Y − MY + (G + iu(λ))Y − GY ])
The solutions for u are:

u = iθ ±
√

2λ − θ2

where we suppose that θ2 < 2λ.
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We shall see that a good choice for θ , for sufficiently large λ permitting θ2 <

2λ, is:

θ = G − M

2
and in this case:

M − iu = G + M

2
+ i

√
2λ −

(
G − M

2

)2

G + iu = G + M

2
− i

√
2λ −

(
G − M

2

)2

It follows that the Laplace transform of the subordinator is:

E[e−λY(t)] = exp(tC�(−Y )[2rY cos(ηY ) − MY − GY ])
r = √

2λ + GM

η = arctan

(√
2λ − ((G − M)/2)2

((G + M)/2)

)
In the special case of G = M we have:

E[e−λY(t)] = exp

(
2tC�(−Y )

[
(2λ + M2)Y/2 cos

(
Y arctan

(√
2λ

M

))
− MY

])
3.1 The explicit time change for CGMY

We show that the time change subordinator Y (t) associated with the CGMY process
is absolutely continuous with respect to the one-sided stable Y/2 subordinator and,
in particular, that its Lévy measure ν(dy) takes the form:

ν(dy) = K

y1+Y/2
f (y) dy

f (y) = e−(B2−A2)y/2E[e−(B2y/2)(γY/2/γ1/2)]
B = G + M

2

K =
[
C�(Y/4)�(1 − Y/4)

2�(1 + Y/2)

]
(7)

where γY/2, γ1/2 are two independent gamma variates with unit scale parameters
and shape parameters Y/2, 1/2 respectively. Furthermore, we also observe that
the Lévy measure of the CGMY subordinator may be written in terms of Hermite
functions explicitly and we evaluate the expectation in (7) in terms of the Hermite
functions as follows:

E[e−(B2y/2)(γY/2/γ1/2)] = �(Y )

�(Y/2)2Y/2−1
h−Y (B

√
y)
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where hν(z) is the Hermite function with parameter ν = −Y and is defined here by
the integral representation:

hν(z) = 1

�(−ν)

∫ ∞

0
e−y2/2−yzy−ν−1 dy, (ν < 0)

(see, eg, Lebedev (1972, pp. 290–291) for an alternative representation).

3.2 Determining the time change for CGMY

For an explicit evaluation of the time change we begin by writing the CGMY Lévy
density in the form:

kCGMY(x) = C
eAx−B|x|

x1+Y
, where: A = G − M

2
; B = G + M

2

Henceforth, when we encounter a Lévy measure µ(dx) that is absolutely
continuous with respect to Lebesgue measure we shall denote its density by µ(x).

We now employ the result (1) and seek to find a Lévy measure νA(dy) of a
subordinator for the asymmetric case with asymmetry parameter A, satisfying:

C
eAx−B|x|

|x|1+Y
=

∫ ∞

0
νA(dy)

1√
2πy

e−(x−θy)2/2y

=
∫ ∞

0
νA(dy)

1√
2πy

e−(x2/2y)−(θ2y/2)+θx

We set θ = A and observe that the right choice for θ is (G − M)/2 as remarked
earlier, and identify νA(dy) such that:

C
e−B|x|

|x|1+Y
=

∫ ∞

0
νA(dy)

1√
2πy

e−(x2/2y)−(θ2y/2) (8)

Now taking:

C = �(Y/2)�(1 − Y/2)

�(1 + Y/2)

we recognize that the Lévy measure for the CGMY is that of the symmetric stable
Y Lévy process with Lévy measure tilted as:

kCGMY(x) = eAx−B|x|kStable(Y )(x)

We also know that:
XStable(Y )(t) = BY 0(t)

where Y 0(t) is the one-sided stable Y/2 subordinator, independent of the Brownian
motion (Bu).

We now write:
XCGMY(t) = θY (1)(t) + WY(1)(t)

and we seek to relate the Lévy measures ν
(1)
A and ν(0) of the processes Y (1) and Y (0).
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From the result (1) we may write:

µ0(x) =
∫ ∞

0
ν(0)(dy)

e−x2/2y

√
2πy

µ1(x) =
∫ ∞

0
ν

(1)
A (dy)

e−(x−θy)2/2y

√
2πy

Hence, we must have that:∫ ∞

0
ν

(1)
A (dy)

e−(x−θy)2/2y

√
y

= eAx−B|x|
∫ ∞

0
ν(0)(dy)

e−x2/2y

√
y

Taking θ = A, we obtain:∫ ∞

0
ν

(1)
A (dy)

e−(x2/2y)−(A2y/2)

√
y

= e−B|x|
∫ ∞

0
ν(0)(dy)

e−x2/2y

√
y

Given the independence of the right-hand side from the asymmetry parameter A

it is clear, using the notation ν(1)(dy) for the Lévy measure for the symmetric case
with A = 0, that:

ν
(1)
A (dy) = ν(1)(dy) eA2y/2

and it remains to determine the solution to the symmetric case ν(1)(dy) satisfying:∫ ∞

0
ν(1)(dy)

e−x2/2y

√
y

= e−B|x|
∫ ∞

0
ν(0)(dy)

e−x2/2y

√
y

= K e−B|x|

|x|1+Y
(9)

3.3 The time change in the symmetric case

We start with the symmetric Lévy measure in the form:

µ(dx) = C
e−B|x|

|x|1+Y
, for 0 < Y < 2 (10)

PROPOSITION 1 The measure (10) may be written as:

µ(dx) =
(∫ ∞

0
ρ(da) exp(−|x|a)

)
dx

where:

ρ(da) = da
C((a − B)+)Y

�(Y + 1)
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PROOF

µ(dx)

dx
= e−B|x|

|x|1+Y
= e−B|x|

∫ ∞

0

aY e−|x|a

�(Y + 1)
da

=
∫ ∞

0

aY e−|x|(a+B)

�(Y + 1)
da =

∫ ∞

B

(a − B)Y e−|x|a

�(Y + 1)
da

=
∫ ∞

0

((a − B)+)Y e−|x|a

�(Y + 1)
da

We now develop three representations for the Lévy measure ν(1)(dy) of the
Brownian subordinator in the symmetric case. The first representation is in terms of
Hermite functions, the second representation is in terms of a ratio of independent
gamma variates and third is an integral representation.

PROPOSITION 2 The symmetric case subordinator has Lévy measure ν(1)(dy)

given by:

ν(1)(dy) = 1

y1+Y/2
e−B2y/2h−Y (B

√
y) dy (11)

PROOF From Proposition 1 we may write:

µ(dx) = dx

∫ ∞

0
ρ(da) e−|x|a (12)

We now use the fact that:

e−|x|a =
∫ ∞

0

a√
2πu3

e−(a2/2u)−(x2/2)u du

substitute in the above integral, change variables to y = 1/u and reverse the order
of integration to obtain that:

µ(dx) = dx

∫ ∞

0
dy

1√
2πy

e−x2/2y

∫ ∞

0
ρ(da)a e−a2y/2 (13)

from which it follows on comparing with (9) that:

ν(1)(dy) = dy

∫ ∞

0
ρ(da)a e−a2y/2

= dy
C

�(Y + 1)

∫ ∞

B

da(a − B)Y a e−a2y/2
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On integrating by parts we obtain:

ν(1)(dy)

dy
= C

�(Y + 1)y

∫ ∞

B

e−a2y/2Y (a − B)Y−1 da

= C

�(Y )y
e−B2y/2

∫ ∞

0
db e−(b2y/2+bBy)bY−1

= C

�(Y )

1

y1+Y/2
e−B2y/2

∫ ∞

0
e−(x2/2+xB

√
y)xY−1 dx

= 1

y1+Y/2
e−B2y/2h−Y (B

√
y)

REMARK 3 Cherny and Shiryaev (2002, Theorem 3.17) discuss representations of
the form (12) and (13) and show that these are both necessary and sufficient for a
symmetric Lévy process to be a Brownian motion time changed by an independent
subordinator.

REMARK 4 The representation (11) may also be related to the Whittaker parabolic
cylinder function. This form of the subordinator for the CGMY has been noted by
Cont and Tankov (2004, Remark 4.2, p. 120) and was also derived by Madan and
Yor (2005).

We now develop another representation of the Lévy measure ν(1)(dy) of the
subordinator in the symmetric case in terms of the Laplace transform of the ratio
of γY/2 to γ1/2, two independent gamma variates. This representation is useful in
developing simulations as we clearly see that the process Y (1)(t) for the required
subordinator is absolutely continuous with respect to the one-sided stable Y/2
subordinator with a Radon–Nikodym derivative that is strictly below unity and we
may appeal to Asmussen and Rosinski (2001) in this case and simulate by shaving
the jumps of the one-sided stable Y/2 subordinator.

PROPOSITION 5 The Lévy measure of the subordinator in the symmetric case can
also be written as:

ν(1)(dy) = dy
2Y/2−1�(Y/2)

�(Y )

1

y1+Y/2
e−B2y/2E

[
exp

(
−B2y

2

γY/2

γ1/2

)]
(14)

for two independent gamma variates γY/2, γ1/2.

PROOF We first determine the constant term on considering the limit of:

lim
y→0

(
y1+Y/2 ν(1)(dy)

dy

)
= h−Y (0) = 2Y/2−1�(Y/2)

�(Y )

It then remains to show that:

E

[
exp

(
−B2y

2

γY/2

γ1/2

)]
= θh−Y (B

√
y)

for some constant θ that depends on Y .
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For this we use the fact that 2γ1/2
(d)= N2 the square of a standard normal variate

and that 1/N2 (d)= T where T is a stable (1/2) with:

E[e−λT ] = e−√
2λ

It follows that, with x = B2y:

E[e−(x/2)(γY/2/γ1/2)] = E[exp(−√
2xγY/2)]

= 1

�(Y/2)

∫ ∞

0
dγ γ Y/2−1 e−γ e−√

2xγ

= 1

�(Y/2)

∫ ∞

0
du

(
u2

2

)Y/2−1

e−(u2/2)−u
√

x

= �(Y )

�(Y/2)2Y/2−1
h−Y (

√
x)

= θ(Y )h−Y (B
√

y)

Finally, with the help of beta–gamma algebra (see, eg, Chaumont and Yor (2003,
exercise 4.6)) we may give yet another integral expression for ν(1)(dy). In fact we
have the following.

PROPOSITION 6 The subordinator ν(1)(dy) in the symmetric case may be writ-
ten as:

ν(1)(dy) = dy
2Y/2−1�(Y/2)

�(Y )

B e−B2y/2

y(Y+1)/2

∫ ∞

0

dh√
2π

e−(B2y/2)h h(Y−1)/2

(1 + h)Y/2
(15)

PROOF Note on defining Z = B2y/2 that we need to establish that:

1√
Z

E

[
exp

(
−Z

(
γY/2

γ1/2

))]
= K

∫ ∞

0
dh e−Zh h(Y−1)/2

(1 + h)Y/2

The constant K is identified by letting Z tend to zero on both sides and noting that
on the right we have with u = Zh:

K√
Z

∫ ∞

0
du e−uu−1/2 = K�(1/2)√

Z

and hence K = (1/�(1/2)) = (1/
√

π).

We now write the reciprocal of
√

Z on the left-hand side as an integral to obtain
that the left-hand side is:

1

�(1/2)

∫ ∞

0

dt√
t

e−tZE

[
exp

(
−Z

(
γY/2

γ1/2

))]
=

∫ ∞

0

dt√
πt

E

[
exp

(
−Z

(
t + γY/2

γ1/2

))]
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Comparing this expression with the right-hand side and noting that we are taking
Laplace transforms in Z of both sides, we deduce that for all test functions f we
must have: ∫ ∞

0

dt√
t
E

[
f

(
t + γY/2

γ1/2

)]
=

∫ ∞

0
dh f (h)

h(Y−1)/2

(1 + h)Y/2

Defining h = t + γY/2/γ1/2 we observe that the expression on the left is:∫ ∞

0
dh f (h)E

[
1h>γY/2/γ1/2√
h − γY/2/γ1/2

]
and hence we need to show that:

E

[
1h>γY/2/γ1/2√
h − γY/2/γ1/2

]
= h(Y−1)/2

(1 + h)Y/2

For this we note that, by beta–gamma algebra:

γY/2

γ1/2

(d)= 1

β1/2,Y/2
− 1

and so for any test function:

E

[
g

(
γY/2

γ1/2

)]
= 1

B(1/2, Y/2)

∫ 1

0
g

(
1

u
− 1

)
u−1/2(1 − u)Y/2−1 du

= 1

B(1/2, Y/2)

∫ ∞

0
g(v)

vY/2−1

(1 + v)(Y+1)/2
dv

In particular, the expectation of interest is:

1

B(1/2, Y/2)

∫ h

0

1√
h − v

vY/2−1

(1 + v)(Y+1)/2
dv

= h(Y−1)/2

B(1/2, Y/2)

∫ 1

0

uY/2−1

√
1 − u(1 + uh)(Y+1)/2

du

and it remains to show that:

1

(1 + h)Y/2
= 1

B(1/2, Y/2)

∫ 1

0

uY/2−1

√
1 − u(1 + uh)(Y+1)/2

du

This follows by noting that the left-hand side is the Laplace transform of γY/2

while the right-hand side is the Laplace transform of the product of β1/2,Y/2 and
γ(Y+1)/2, these variables being assumed independent. This is the product of a γY/2

variate in distribution.

REMARK 7 Note that on the right-hand side of (14) the power of y is −(1 + Y/2)

while on the right-hand side of (15) it is −((1 + Y )/2).
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REMARK 8 We briefly comment on the three representations for ν1(dy). For-
mula (11), which expresses ν(1)(dy) in terms of Hermite functions follows from the
identification of the density of the symmetric CGMY Lévy measure as an integral
of {exp(−|x|a), a > 0} and the well-known fact that:

exp(−|x|a) = E

[
exp

(
−x2

2
Ta

)]
with Ta being the first hitting time of level a by Brownian motion.

The representation (14) hinges upon the expression of the Laplace transform of
(γY/2/γ1/2) in terms of Hermite functions.

Formula (15) is derived via manipulations related to beta–gamma algebra,
starting from formula (14).

We note that in our previous work (Madan and Yor (2005)) we arrived first
at the representation (15) by considering that the Lévy density of the CGMY
process is the product of exp(−B|x|) and the Lévy density of (β

τ
(Y/2)
t

, t ≥ 0),

where (τ
(Y/2)
t , t ≥ 0) is a stable (Y/2) subordinator independent of the Brownian

motion (βs, s ≥ 0). Furthermore, in our previous paper (Madan and Yor (2005)) our
representation of the Meixner process as subordinated Brownian motion is closer
to the method used here for the representation (11) in that we identify directly the
Lévy density of the Meixner process as a Laplace transform in x2.

4 SIMULATING CGMY USING ROSINSKI REJECTION

We suppose that we have two Lévy measures Q(dx), Q0(dx) with the property
that:

dQ

dQ0
≤ 1

For the verification of the absolute continuity of the CGMY subordinators to the
stable Y/2 subordinator we refer the reader to (Madan and Yor (2005, Sections 3.2.1
and 3.2.2)). In this case it is then shown by Asmussen and Rosinski (2001) that we
may simulate the paths of Q from those of Q0 by only accepting all jumps x in the
paths of Q0 for which:

dQ

dQ0
(x) > w

where w is an independent draw from a uniform distribution.
For our case we have that:

dν1

dν0
= E[e−yZ] < 1

and so accept all jumps in the paths of ν0 for which:

E[e−yZ] > w
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4.1 Simulating CGMY as Brownian motion time changed by a
shaved stable process

The focus here is on the simulation of the paths of the process. If we were to
simulate a large step for the purpose of pricing a European option at some relatively
large maturity, then one might use Fourier inversion to construct the distribution
function at the large time step and employ standard inverse uniform methods to
generate a CGMY random variable at the large time step. Alternatively, one may
also simulate the CGMY process as a jump diffusion by simulating the large jumps
using a compound Poisson process where jump sizes could be drawn from an
incomplete gamma distribution function and the small jumps are approximated
using a diffusion. For details on this simulation we refer the reader to Asmussen
and Rosinski (2001). Yet another approach to valuation is to employ methods of
measure changes as explained by Poirot and Tankov (2006).

For the simulation of the paths of the process, from the results of this paper
we recognize that we have a time changed Brownian motion for which the paths
may be constructed from the path of the time change. Since the time change is
that of a shaved stable process, we follow classical methods described in Asmussen
and Rosinski (2001) for the simulation of the stable process. Our contribution is the
identification of the function to be used in shaving the stable process to construct the
time change for Brownian motion appropriate for recovering the CGMY process.

The detailed algorithm is for parameters C, G, M, Y . First define the time step
to be C:

t = C

Then we let:

A = G − M

2

B = G + M

2

We next simulate the path of a one-sided stable subordinator to time t using
well-known methods. The Lévy measure for this subordinator is:

C
√

2π

2Y/2�((1 + Y )/2)yY/2+1
dy

The small jumps are truncated and replaced by their expected value at a drift rate
of δ. The choice of the truncation point was determined with a view to controlling
the absolute error in the distance between the true and approximate distribution
function as described by Asmussen and Rosinski (2001, Theorem 3.1). We targeted
an upper bound at 1%. The jumps above ε have an arrival rate of λ:

δ = ε1−Y/2

1 − Y/2
; λ = 2

Y

1

εY/2
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The intervals between jump times are exponential and are simulated by:

ti = −1

λ
log(1 − u2i)

for an independent uniform sequence u2i . The actual jump times are:

�j =
j∑

i=1

ti

We generate the number of jumps required by a draw from an appropriate Poisson
distribution. We then draw jump sizes for all these jumps up to the maximum
number of jumps using an inverse uniform form as described by (16). We then
recognize that jump times are uniform and sum over jumps up to a uniform time
draw after the sizes have been deleted in accordance with (17) and (18).

For the jump magnitude we simulate from the normalized Lévy measure the
jump size yj given by:

yj = ε

(1 − u1j )2/Y
(16)

for an independent uniform sequence u1j .

The process S(t) for the stable subordinator is given by:

S(t) = δt +
∞∑

j=1

yj 1�j<t

We now obtain the CGMY subordinator H(t) by:

H(t) = δt +
∞∑

j=1

yj 1�j<t1h(y)>u3j
(17)

h(y) = e−(B2−A2)y/2 �(Y )

�(Y/2)2Y/2−1
h−Y (B

√
y) (18)

for an independent uniform sequence u3j .
Finally we simulate the CGMY random variable by:

X = AH(t) + √
H(t)z

for a draw z of a standard normal random variable.
The actual simulation cost in terms of random draws is of the order of that for the

underlying one-sided stable process, as we merely throw away some of these jumps
to build the CGMY subordinator and then make a draw from a normal distribution
to obtain to the CGMY variate. The dependence of the cost on the parameters
beyond that of simulating the stable process, is that of computing the truncation
functions. On the selected settings the CPU time for one time step of a single
day or t = 0.004 was 0.46 seconds for the CGMY process where we precomputed
the truncation function and 3.31 seconds for the Meixner process studied below,
where the truncation was not precomputed. The maximum number of jumps in the
summation (17) for the settings used was 10 for CGMY. The corresponding value
for Meixner was 11.
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5 THE MEIXNER PROCESS AS A TIME CHANGED BROWNIAN
MOTION

We consider the Meixner Process (Schoutens and Teugels (1998); Pitman and Yor
(2003)) as a time changed Brownian motion. The Lévy measure of the Meixner
process is:

k(x) = δ
exp((b/a)x)

x sinh(πx/a)

The characteristic function is given by:

φMeixner(u) = E[eiuX1 ]

=
(

cos(b/2)

cosh(au − ib)/2)

)2δ

To see this process as a time changed Brownian motion we wish to identify lA(u)

the Lévy measure of a subordinator for the asymmetric case such that:

k(x) =
∫ ∞

−∞
1√
2πy

exp

(
− (x − Ay)2

2y

)
lA(y) dy

= eAx

∫ ∞

−∞
1√
2πy

exp

(
−x2

2y
− A2y

2

)
lA(y) dy

Hence, we reduce to the symmetric case by setting:

A = b

a

and we then seek to write:

δ
1

x sinh(πx/a)
=

∫ ∞

0

1√
2πy

exp

(
−x2

2y
− A2y

2

)
lA(y) dy (19)

We may introduce the Lévy measure for the symmetric case as l(y) and we note
that:

lA(y) = l(y) exp

(
A2y

2

)
To identify the symmetric case we transform the left-hand side of (19) as follows.

We recall that:
Cx

sinh(Cx)
= E

[
exp

(
−x2

2
T

(3)
C

)]
where T

(3)
C = inf{t | R

(3)
t = C} for R

(3)
t the BES(3) process.

Then we write:

δ
1

x sinh(πx/a)
= δ(πx/a)

(πx2/a) sinh(πx/a)

= δa

π

1

x2
E

[
exp

(
−x2

2
T

(3)
C

)]
= δa

π

1

x2
E

[
exp

(
−x2C2

2
T

(3)
1

)]
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with C = π/a. Denote by θ(h) dh the law of T
(3)
1 . We may then write:

δ
1

x sinh(πx/a)
= δa

π

∫ ∞

0

du

2
exp

(
−x2u

2

)
E

[
exp

(
−x2C2

2
T

(3)
1

)]
= δa

2π

∫ ∞

0
du E

[
exp

(
−x2

2
(u + C2T

(3)
1 )

)]
= δa

2π

∫ ∞

0
du

∫ ∞

0
θ(t) dt exp

(
−x2

2
(u + C2t)

)
= δa

2π

∫ ∞

0
du

∫ ∞

u

dv

C2
exp

(
−x2v

2

)
θ

(
v − u

C2

)
= δa

2π

∫ ∞

0
dv exp

(
−x2v

2

) ∫ v

0

du

C2
θ

(
v − u

C2

)

= δa

2π

∫ ∞

0
dv exp

(
−x2v

2

) ∫ v/C2

0
dhθ(h)

=
∫ ∞

0
dv exp

(
−x2v

2

)
θ̂ (v)

where:

θ̂ (v) = δa

2π

∫ v/C2

0
θ(h) dh

= δa

2π
P

(
T

(3)
1 ≤ v

C2

)
= δa

2π
P ( max

t≤v/C2
R

(3)
t ≥ 1)

We recall that:

T
(3)

1
(law)= 1

(maxt≤1 R
(3)
t )2

We now transform the right-hand side of (19) to write:∫ ∞

0

1√
2πy

exp

(
−x2

2y
− A2y

2

)
l(y) dy

=
∫ ∞

0

1√
2πv3

exp

(
−x2v

2
− A2

2v

)
l

(
1

v

)
dv

From the uniqueness of Laplace transforms we deduce that:

θ̂ (v) = 1√
2πv3

exp

(
A2

2v

)
l

(
1

v

)
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or:

l(u) =
√

2π

u3
θ̂

(
1

u

)
exp

(
−A2u

2

)
=

√
2π

u3

δa

2π
P (M

(3)
1 ≥ C

√
u) exp

(
−A2u

2

)
= δa√

2πu3
P(M

(3)
1 ≥ C

√
u) exp

(
−A2u

2

)
= δa√

2πu3
g(u)

where, going back to the asymmetric case, we have:

g(u) = P(M
(3)
1 ≥ C

√
u) exp

(
−A2u

2

)
For the absolute continuity of our subordinator with respect to the one-sided

stable 1
2 we again refer the reader to (Madan and Yor (2005, Sections 3.2.1

and 3.2.2)).
For the simulation of Meixner as a time changed Brownian motion we would

wish to evaluate:

P(M
(3)
1 ≥ C

√
u) = P

(
1

(M
(3)
1 )2

≤ 1

C2u

)

= P

(
T

(3)
1 ≤ 1

C2u

)
= P

(
π2T

(3)
1 ≤ π2

C2u

)
= P

(
T (3)

π ≤ π2

C2u

)
=

∞∑
−∞

(−1)n e−n2π2/(2C2u)

For the last equality we refer the reader to Pitman and Yor (2003).

6 SIMULATION OF THE MEIXNER PROCESS

The simulation strategy is similar to that employed in Section 4 for CGMY, except
that here we first simulate the jumps of the one-sided stable (1/2) with Lévy
density:

k(x) = δa√
2πx3

, x > 0

and truncate using the function g(y).
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We approximate the small jumps of the subordinator using the drift ζ . The arrival
rate is λ and the jump sizes are yj obtained from an independent uniform sequence
where:

ζ = δa

√
2ε

π
; λ = δa

√
2

πε
; yj = ε

u2
j

We then evaluate the function g(y) at the point yj and define the time-change
variable:

τ = ζ +
∑
j

yj1g(yj )>wj

for yet another independent uniform sequence wj .
The value of the Meixner random variable or, equivalently, the unit time level of

the process is then generated as:

X = b

a
τ + √

τz

where z is an independent standard normal variate.

7 RESULTS OF SIMULATIONS

In this section we present the results of simulating the processes at typical parameter
values obtained on calibrating option prices on the S&P 500 index for both the
CGMY and Meixner processes. The parameter values for the CGMY process were
C = 1, G = 5, M = 10, and Y = 0.5. The parameters for the Meixner process were
a = 0.25, b = −0.5 and δ = 1.

Table 1 presents the option prices computed by simulation and by Fourier
inversion using the methods of Carr and Madan (1999) for a range of strikes and
maturities. The spot was 100 and we used an interest rate of 3% with a dividend
yield of 1%. For strikes below the spot we employ puts while for strikes above or
equal to the spot the prices are for call options.

8 CONCLUSION

Two Lévy processes, the CGMY process and the Meixner process are studied and it
is shown that both processes can be represented as time changed Brownian motions.
The time changes in both cases are absolutely continuous with respect to the one-
sided stable α process with α = Y/2 for CGMY and 1/2 for Meixner. It is then
possible to simulate both processes as shaved stable processes where one throws
away some jumps from the one-sided stable α simulation. The simulation cost is
that of the stable α process as the jumps to throw away are analytically determined
and the other parameters enter only through this analytical truncation. An exercise
on pricing European options by simulation has also been presented.
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TABLE 1 Option prices via simulation and FFT.

Strike Maturity CGMY simulation CGMY FFT Meixner simulation Meixner FFT

80 0.25 0.8780 0.8698 0.1174 0.1266
90 0.25 2.2482 2.2475 0.6022 0.6179

100 0.25 5.9277 5.8919 3.3690 3.4127
110 0.25 2.1573 2.1420 0.5934 0.6543
120 0.25 0.8100 0.7848 0.1293 0.1587
80 0.5 1.8725 1.8854 0.3150 0.3284
90 0.5 4.0581 4.0589 1.2362 1.2868

100 0.5 8.8413 8.8226 5.1135 5.2081
110 0.5 4.7237 4.7026 1.5889 1.6870
120 0.5 2.3855 2.3585 0.4656 0.5282
80 0.75 2.8716 2.8638 0.5593 0.5714
90 0.75 5.5181 5.5219 1.8617 1.9000

100 0.75 11.0472 11.0672 6.5256 6.6170
110 0.75 6.9062 6.8875 2.7066 2.7717
120 0.75 4.1357 4.1038 1.0410 1.0710
80 1 3.7272 3.7681 0.8117 0.8323
90 1 6.7255 6.7515 2.3644 2.4458

100 1 12.9427 12.9545 7.7168 7.8220
110 1 8.7682 8.7819 3.7458 3.8095
120 1 5.7451 5.7803 1.6819 1.7152
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